Machine Learning – Forêt aléatoire (random forest)

Dernière mise à jour le 8 janvier 2025

Programme de la formation

Découvrez, ou redécouvrez l’essentiel des forêts aléatoires, leur utilité et leur mise en pratique en seulement 2 heures !

  • Introduction
  • Motivation (« high variance » des arbres de décisions, pouvoir prédictif, …)
  • Concept de base (notion d’ensemble, observation bagging, features bagging, OOB)
  • Mise en pratique sous « R »
  • Avantages & inconvénients
  • Hyperparameters tuning & GoF
  • Quizz
  • Fiche récapitulative
Dernière date
Inscription possible jusqu'à la veille de la formation 16h (hors weekend et jour férié)

Date à programmer, dès inscription.

Merci de contacter info@caritat.fr pour toute inscription.

Prix
  • 500 € HT
  • TVA 20%
  • 600 € TTC
Lieu

TEAMS, En distanciel, via application

Durée

2 heures

Programme adaptable,
sur-mesure

Notre formateur

Dimitri MINASSIAN

Actuaire certifié travaillant au sein de Liberty Mutual Re, Dimitri est lauréat du Prix Caritat 2018. Fort de ses diverses responsabilités en France comme à l'étranger, Dimitri a développé une expertise technique sur de nombreuses problématiques non-vies, telles que la modélisation des risques en extrêmes, le machine learning ou la tarification. Ayant un attrait particulier pour l'enseignement et le partage des connaissances, Dimitri intervient dans plusieurs formations Caritat.

Points clés

À qui s’adresse cette formation ?

À toutes les personnes désireuses de découvrir ou redécouvrir l’essentiel des algorithmes de type forêt aléatoire, à savoir leur concept, leurs intérêts et leurs mises en pratique.

Pour obtenir quoi ?

Comprendre l’essentiel des algorithmes de type forêt aléatoire.

Quels sont les objectifs pédagogiques ?

  • Apprivoiser les algorithmes de type forêt aléatoire.
  • Exposer leurs mises en pratique avec le langage « R » (y compris le tuning des hyper-paramètres).

Quelles méthodes mobilisées ?

Au cours de cette session, les participants seront sollicités sur les aspects théoriques du sujet, ainsi que sur leurs mises en pratiques via des cas concrets tirés de la vie réelle.

Quels sont les prérequis ?

Afin de pouvoir profiter pleinement de cette formation, il est vivement recommandé au participant de suivre au préalable la session sur les « arbres de décisions ». Il est préférable – mais pas obligatoire – de connaître les bases du langage « R » (lecture et manipulation de données).

Quelles modalités d’évaluation ?

Une évaluation des acquis des objectifs sera réalisée durant la formation.

 

Chaque participant se munira d’un ordinateur portable pour les travaux pratiques.

Témoignages

«Normally I do not read article on blogs however I would like to say that this writeup very forced me to try and do so Your writing style has been amazed me Thanks quite great post
Inscrivez-vous à notre newsletter

Pour recevoir toutes les dernières informations